Self-Supervised Learning in Vision

Emilio 7arbali

XITASO GmbH

February 1, 2024

Emilio Zarbali XITASO GmbH February 1, 2024 1 / 41

Overview

- 1 Learning Algorithms
- 2 Supervised Learning
- 3 Issues with SL
- 4 SSL
- 5 Contrastive Learning
- 6 MaWis-Kl
- 7 Discussion

Emilio Zarbali XITASO GmbH February 1, 2024 2 / 41

Taxonomy

■ Reinforcement Learning

■ Learn model parameters using active exploration from sparse rewards

■ Unsupervised Learning

lacktriangle Learn model parameters using dataset without labels $\{x_i\}_{i=1}^N$

■ Supervised Learning

■ Learn model parameters using dataset of data-label pairs $\{(x_i, y_i)\}_{i=1}^N$

■ Self-supervised Learning

■ Learn model parameters using dataset of data-data pairs $\{(x_i, x_i')\}_{i=1}^N$

Emilio Zarbali XITASO GmbH February 1, 2024 3 / 41

Self-supervised Learning

- A form of **unsupervised** learning where the supervision signal is derived from the **data itself**
- For most part we can differentiate between two SSL algorithms:
 - **Discriminative** (SimCLR, MoCo, BYOL, CLIP, ...): some sort of augmentations are applied to achieve learning rich features
 - **Generative** (MAE, oBoW, I-JEPA, ..): some part of the image is withheld and network generates missing part (similar to MLM)

Emilio Zarbali XITASO GmbH February 1, 2024 4 / 41

Success of SL

- Supervised Learning has shown tremendous capabilities in solving various tasks of learning
 - NLP
 - Computer Vision
 - Autonomous Systems
 - Neural Rendering
- outperforming classical methods

Emilio Zarbali XITASO GmbH February 1, 2024 5 / 41

Supervised Learning

- Let \mathcal{D} denote the dataframe consisting of $(x_i, y_i)_{i=1}^N$ data-label pairs
- \blacksquare Supervised learning aims to learn a mapping function f

$$f: x \to y$$

■ by minimizing some cost function $J(y, \hat{y})$, where y is the ground truth and \hat{y} is the model predictions

Emilio Zarbali XITASO GmbH February 1, 2024 6 / 4

Drawbacks

- Supervised Learning requires large amount of annotated data
 - expensive and time-consuming
 - needs highly balanced dataset
 - struggles with following:
 - adversarial attacks. OOD detection, etc.
- Data distributions shift: Everytime you need large annotation campaigns
- Accuracy \neq Robustness

Emilio Zarbali XITASO GmbH February 1, 2024 7 / 41

Annotation time

Figure: Cityscapes Example

 $\blacksquare \sim 90 \text{ Min/per Image in Cityscapes}$

Emilio Zarbali XITASO GmbH February 1, 2024 8 / 41

Fewer labeled data

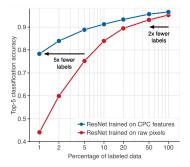


Figure: Label quantity¹ (higher is better)

■ SSL performs much better with **fewer** labeled data

9 / 41

¹Olivier J. Hénaff et al. "Data-Efficient Image Recognition with Contrastive Predictive Coding". In: CoRR (2019).

Emilio Zarbali XITASO GmbH February 1, 2024

Class imbalance

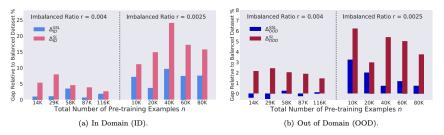


Figure: Class imbalance performance gap² (lower is better)

- SSL is more **robust** to class imbalance
- captures richer sets of features that are not limited to semantic classes

XITASO 💥

Emilio Zarbali XITASO GmbH February 1, 2024 10 / 41

²Hong Liu et al. "Self-supervised Learning is More Robust to Dataset Imbalance". In: CoRR (2021).

Robustness towards distortions

Pre-train Alg	IN Acc	C-10	C-100	STL-10	Car-196	Air-70	Avg ∆↓
Sup-a	76.1	31.5%	45.3%	31.0%	51.2%	39.9%	39.8%
Sup-b	75.5	32.1%	47.2%	31.9%	53.2%	39.2%	40.7%
BYOL	72.3	29.3%	43.0%	29.0%	42.9%	33.8%	35.6%
SimSiam	68.3	27.8%	40.8%	29.3%	41.5%	32.6%	34.4%
MoCo-v2-a	66.4	28.1%	40.5%	29.4%	36.8%	29.4%	32.8%
MoCo-v2-b	71.1	31.3%	45.2%	31.0%	39.7%	31.3%	35.7%
SimCLR-v2	71.0	31.5%	45.4%	30.8%	43.0%	31.7%	36.5%
BarlowTwins	73.5	26.7%	39.8%	29.7%	43.0%	34.4%	34.7%
DeepCluster-v2	75.2	28.2%	41.1%	28.5%	43.2%	38.9%	36.0%
SwAV-a	72.0	27.0%	39.8%	28.3%	40.6%	33.9%	33.9%
SwAV-b	74.9	26.8%	39.3%	28.6%	41.4%	36.3%	34.5%

Figure: Robustness towards gamma distortions³ (lower is better)

 Robustness allows model to work well in imperfect real-world scenarios

XITASO

³Yuanyi Zhong et al. *Is Self-Supervised Learning More Robust Than Supervised Learning?* 2022. arXiv: 2206.05259.

Data Bias

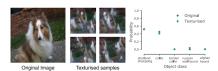


Figure: Pixel Distribution Bias^a

^aLeon A .Gatys et al. "Texture and art with deep neural networks". In: *Current Opinion in Neurobiology* 46 (2017), pp. 178–186.

10.3% indri

8.2% black swan

nt 71.1% tabby cat 63.9% Indian elephant 17.3% grey fox 26.4% indri 3.3% Slamese cat 9.6% black swan

Figure: Texture Bias^a

^aRobert Geirhos et al. *ImageNet-trained CNNs are* biased towards texture; increasing shape bias improves accuracy and robustness. 2022.

Emilio Zarbali XITASO GmbH February 1, 2024 12 / 41

Summary

- Good datasets for complex tasks are **extremely** costly and **difficult** to collect and label
- Can we learn **useful** and **semantic rich** features only from data alone?

Emilio Zarbali XITASO GmbH February 1, 2024 13 / 41

Overview

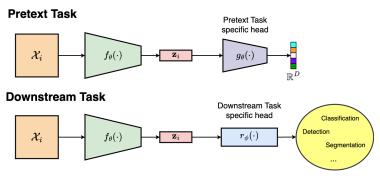


Figure: Self-Supervised Learning

Emilio Zarbali XITASO GmbH February 1, 2024 14 / 41

Procedure of SSL

- Goal of pretext task:
 - Learn general knowledge with pretext task
- Pretext task:
 - define an auxiliary task for pre-training with large amount of unlabeled data
- Drop **projector** $g_{\theta}(\cdot)$ and use **feature extractor** $f_{\theta}(\cdot)$ for downstream task with labeled data

Emilio Zarbali XITASO GmbH February 1, 2024 15 / 41

Evaluation

- SSL methods are evaluated on **downstream** task performance and not on pretext task
- Evaluation are based on **complexity** and **alignment** of pretext and downstream task
 - *k*-NN or Linear probe for classification tasks
 - Fine-tuning for tasks like Object detection, Segmentation, etc.

Emilio Zarbali XITASO GmbH February 1, 2024 16 / 41

Challenges in SSL

Problems:

- Designing good pretext tasks are tedious and have no underlying theory behind it
- representations may not be general
- Mode Collapse

Emilio Zarbali XITASO GmbH February 1, 2024 17 / 41

Introduction to Contrastive Learning

- SL and Metric Learning
 - Anchor and Positive: same class
 - Negative: random different class
- SSL
 - Anchor and Positive: same image
 - Negative: random different image

Emilio Zarbali XITASO GmbH February 1, 2024 18 / 41

Motivation

- Idea behind contrastive learning is to make images from different views **close** in the feature space and all the other images **far away**
- Given a score function $s(\cdot, \cdot)$, we want to learn an encoder $f(\cdot)$ that yields **high score** for positive pairs (x, x^+) and low score for negative pairs (x, x^-)

$$s(f(x), f(x^{+})) \gg s(f(x), f(x^{-}))$$

Emilio Zarbali XITASO GmbH February 1, 2024 19 / 41

Another perspective

■ Maximizing the **mutual information** between features extracted from different views forces encoder $f(\cdot)$ to capture information about higher-level factors

$$MI(x, x^+) \ge log(N) - \mathcal{L}$$

 Emilio Zarbali
 XITASO GmbH
 February 1, 2024
 20 / 41

Mutual Information

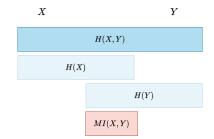


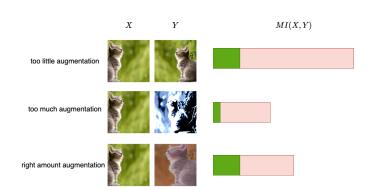
Figure: X and Y are two different images

Emilio Zarbali XITASO GmbH February 1, 2024 21 / 41

Useful Mutual Information

Emilio Zarbali XITASO GmbH February 1, 2024 22 / 41

Augmentations



Emilio Zarbali XITASO GmbH February 1, 2024 23 / 41

InfoMIN

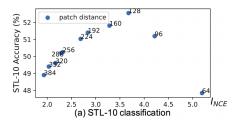


Figure: Performance vs Mutual Information⁴

⁴Yonglong Tian et al. What Makes for Good Views for Contrastive Learning? 2020. arXiv: 2005.10243 [cs.CV].

Emilio Zarbali XITASO GmbH February 1, 2024 24 / 41

SimCLR

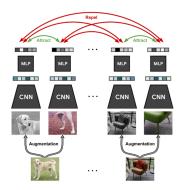


Figure: SimCLR⁵

- Augmentations of the same image are viewed as positives
- the rest of the batch is seen as negatives

⁵Ting Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations". In: CoRR (2020).

Emilio Zarbali XITASO GmbH February 1, 2024 25 / 41

InfoNCE Loss

■ SimCLR uses InfoNCE loss

$$\ell_{i,j} = -\log \frac{\exp(sim(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum\limits_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(sim(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

- \blacksquare $sim(\cdot, \cdot)$ is typically cosine similarity
- \blacksquare \mathcal{D} is of size 2N, as we obtain two views per image in dataset

Emilio Zarbali XITASO GmbH February 1, 2024 26 / 41

Performance of SimCLR

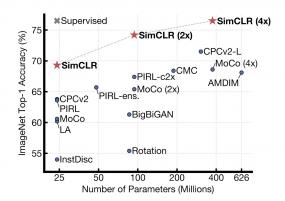


Figure: Performance on ImageNet (higher is better)

Emilio Zarbali XITASO GmbH February 1, 2024 27 / 41

Drawbacks of SimCLR

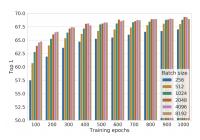


Figure: Batchsize used in SimCLR

- SimCLR rely shines under two following criterias
 - Large negatives: Bound is tighter with more negatives
 - Consequence: Large batch size

Emilio Zarbali XITASO GmbH February 1, 2024 28 / 41

MoCo Framework

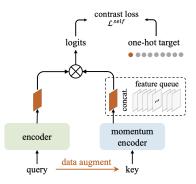


Figure: Momentum Contrast⁶

- Main objective: leverage contrastive learning with a smaller batch size
- BUT: More negatives are necessary for tighter bound

XITASO 💥

⁶Kaiming He et al. "Momentum Contrast for Unsupervised Visual Representation Learning". In: CoRR (2019).

Emilio Zarbali XITASO GmbH February 1, 2024 29 / 41

Query and Key Encoder

- Use two identical networks f_q and f_k , one query and key encoder respectively
- \blacksquare f_q is updated with gradient descent
- in order to keep memory consistent, He et al. used following trick:
- f_k is updated with $\theta_k \leftarrow m\theta_k + (1-m)\theta_q$

Emilio Zarbali XITASO GmbH February 1, 2024 30 / 41

Results

case	MLP	ImageNet acc.								
MoCo v1 [6]				200	256	60.6				
SimCLR [2]	✓	\checkmark	\checkmark	200	256	61.9				
SimCLR [2]	✓	✓	\checkmark	200	8192	66.6				
MoCo v2	✓	\checkmark	\checkmark	200	256	67.5				
results of longer unsupervised training follow:										
SimCLR [2]	√	√	√	1000	4096	69.3				
MoCo v2	✓	✓	\checkmark	800	256	71.1				

Figure: Results on ImageNet Evaluation⁷

31 / 41

⁷Kaiming He et al. "Momentum Contrast for Unsupervised Visual Representation Learning". In: *CoRR* (2019).

Emilio Zarbali XITASO GmbH February 1, 2024

Bootstrap Your Own Latent (BYOL)

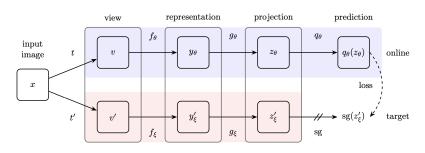


Figure: BYOL⁸

- lacktriangleq MSE-Loss between Online representations and Target representations
- lacksquare f_{online} is updated with gradient descent
- f_{target} is updated with $\theta_{target} \leftarrow m\theta_{target} + (1-m)\theta_{online}$

XITASO 💥

Emilio Zarbali XITASO GmbH February 1, 2024 32 / 41

⁸ Jean-Bastien Grill et al. Bootstrap your own latent: A new approach to self-supervised Learning. 2020.

MaWis-KI

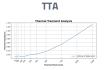


Figure: Data

- Goal: Reliable lifetime prediction of solder joints using data-driven methods
 - automotive electronics
 - Voids and cracks have big impact on quality

Emilio Zarbali XITASO GmbH February 1, 2024 33 / 41

Sampling rate

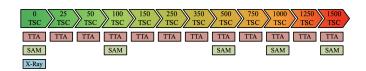


Figure: Sampling Rate

Emilio Zarbali XITASO GmbH February 1, 2024 34 / 41

Model

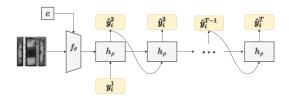


Figure: Model Architecture

Emilio Zarbali XITASO GmbH February 1, 2024 35 / 41

Visualization of the Embedding Space

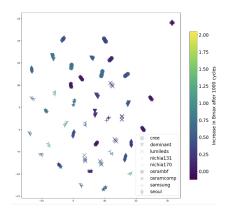


Figure: Embedding Space of SL

Emilio Zarbali XITASO GmbH February 1, 2024 36 / 41

Pretext Task

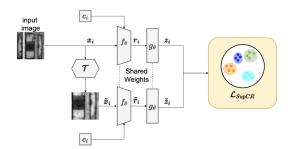


Figure: Contrastive Learning Pipeline

Emilio Zarbali XITASO GmbH February 1, 2024 37 / 41

Visualization of the Embedding Space

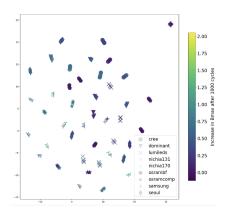


Figure: Embedding Space of SL

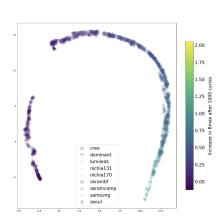


Figure: Embedding Space of SSL

Emilio Zarbali XITASO GmbH February 1, 2024 38 / 41

Learning Features

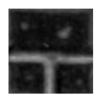


Figure: GT vs SL vs SSL⁹

⁹Emilio Zarbali et al. Contrastive pretraining of regression tasks in automotive electronics. 2023.

Emilio Zarbali XITASO GmbH February 1, 2024 39 / 41

Takeaway

- Self-supervised learning should not be seen as a new technique to compete against supervised learning
- rather in conjunction with supervised learning as seen in
 - NLP: BERT, GPT, LLaMa, etc.
 - Multitask Learning: CLIP, Flamingo, etc.
 - Vision: SimCLR, DINO, etc.
- Pretext task has to be carefully designed with respect to
 - Goals of downstream task
 - Invariance and equivariance of downstream task
- especially Transformer architecture benefits from SSL pretraining

Emilio Zarbali XITASO GmbH February 1, 2024 40 / 41

Discussion!

emilio.zarbali@xitaso.com

Emilio Zarbali XITASO GmbH February 1, 2024 41 / 41